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R E S O N A N T  O S C I L L A T I O N S  OF A GAS IN AN O P E N - E N D E D  

T U B E  IN A W E A K  T U R B U L E N C E  R E G I M E  

It. G. Galiullin, E. R. Galiullina, and E. I. Permyakov 1 UDC 532.517.4:534.213 

An analytical theory of resonant oscillations of a gas in an open-ended tube is developed. The 
gas flow in the tube is assumed to be turbulent. A model of gas flow near the open end of the 
tube is constructed. This model allows a boundary condition that is free of empirical parameters 
to be obtained. Theoretical results are in reasonable agreement with experimental data obtained 
by other authors. 

Thetheory of resonant oscillations of a gas in tubes-resonators is one of the most interesting problems of 
hydrodynamic acoustics. High-intensity oscillations of a gas are usually excited by a piston which harmonically 
oscillates at one end of the tube [1-4]. Of particular interest from the practical viewpoint are open-ended tubes- 
resonators. Oscillations in such systems are accompanied by a number of interesting effects: an oscillating jet 
is formed at the open end of a tube [5], a nonuniform temperature field is established in a tube [6], etc. 

The qualitative theory of the phenomenon is not yet complete. This is connected with the complexity 
of the boundary condition at the open end of a tube [7, 8] and poor knowledge of the specifics of an oscillating 
turbulent flow in a tube [9]. An analytical model of the processes at the open end of the tube has been 
constructed recently, and, using this model, the boundary condition has been determined [10]. The models of 
tube turbulence, which were proposed in [11, 12] for the first time, offer a description of experimental results, 
but have significant drawbacks: (a) they ignore the heat transfer between the tube wall and a gas; (b) they 

-are based on the assumption of a quasi-stationary regime'of turbulence; (c) they do not consider dispersion 
in a turbulent medium. 

In this paper, an attempt is made to construct a model of resonant oscillations of a gas at one end of 
a tube in a turbulent flow regime that is free of the above drawbacks. 

Oscillations in a cylindrical tube of length L and radius R, which are excited by a harmonically 
oscillating piston with displacement amplitude l0 << L, are characterized by the following dimensionless 
parameters [7-9, 13]: 

V .f~_ o JR ~olo V ~ 
e = ~ - ~ ,  H=Rvu, sinh=--~--, Mp= , R e ~ = - - .  

cO top  

Here V is the amplitude of velocity fluctuations in a velocity loop (for the first resonance, at the open end of 
the tube), w is the cyclic frequency of oscillations, v is the kinematic viscosity, and cO is the speed of sound 
in an undisturbed gas. Since 10 ~ L, for oscillations around the basic resonance frequency w0 = ~rcO/(2L) [13] 
we obtain Mp << 1. In experiment, we usually have H >> 1 (the effect of the acoustic boundary layer on the 
flow core is small) and sinh ~< 1. For a long tube (L /R  >> 1), the condition sinh ~< 1 leads to e << 1, i.e., the 
problem can be solved by the methods of disturbance theory [13]. The criterion Re~ indicates a turbulence 
regime: if 10 s ~ Re~ ~< 6- 10 s, the regime of weak turbulence occurs [9]. This regime is of interest because 
the majority of experiments were conducted under these conditions [1-4]. 
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Nonisentropic oscillations of a gas in a tube can be described by the equations [14] 

0(pu)s -I- a (pu2)s -I- ap 27 0p Op au ,  2 ( ze -  1) 
a---t-- ~z  ~ z + R  = 0 '  a-t- + us ~ + rap  ax R q = 0 ,  (1) 

where p, p, and u are the density, pressure, and velocity, respectively; 7 and q are the shear stress and the heat 
flux at the tube wall, ~e = q , / cv ,  t is the time, x is the longitudinal coordinate (the closed end of the tube 
corresponds to z = O, and the open end to x = L), and the subscript s means that  the quanti ty is averaged 
over the tube cross section. In the first (acoustic) approximation, we obtain from (1) that  

aUls apl 271 apl .~. p0~ aul,  2 (m-  1) 
po Ti-" + ax = - - -R'  at ax - R ql. (2) 

The subscript 1 denotes here the first approximation, and the subscript 0 refers to the quantities of an 
undisturbed flow. To solve system (2), one must  est imate 71 and ql. 

First of all, we take into account that  with allowance for the boundary condition u(R) = O, the Reynolds 
equations writ ten near the  tube  wall lead to the relation 

ap  1 a [ 

a~ = - 7 ~ (r71),,=R. 
It follows from here that ,  since p is independent of r, the dependence of rl on x and t ime is similar to the 
dependence of the  pressure gradient on x. On the other hand, the Reynolds equations written at the tube 
axis with allowance for the  symmetry  condition 

yield 

au, I apl po at I,=0 + ~ -x  = 0, 

i.e., the dependence of the  pressure gradient on x is similar to that  of the  velocity. Summarizing the aforesaid, 
we can show tha t  in (2) 

n ,', u~(~,t ~ ~). (3) 

The  validity of (3) is verified, by experiment [9]. For a uniform velocity distribution along the tube, the 
relationship between the  shear-stress ampli tude on the  wall 71m and the  ampli tude of velocity fluctuations at 
the  tube axis is as follows [9]: 

1 2 
71,,, = ~ po.f~,(Ulm) �9 (4) 

In the case of weak turbulence,  the friction coefficient on the wall is fw ~ 0.005 [9]. 
For (3) to  be consistent with (4), we assume tha t  

l "  

7, (~, t) = p0~0ul(~, t + ~), ~0 = v f ,  ~ ulm(x) dx, (5) 
2 J V 

0 
where the coefficient/~0 takes into account that  the ampli tude of velocity fluctuations ulm depends on x for 
resonant oscillations of a gas in a tube. 

Before using (5) in (2), we pass from the flow velocity at the tube axis ul to the cross section-averaged 
velocity uls and take into account the phase shift between the oscillations rl at the wall and ul  at the axis. 
In a weak turbulence regime, the  ampli tude profile of velocity fluctuations is uniform everywhere, except for 
a layer of thickness 61, in which a universal distribution of the ampli tude of velocity fluctuations is observed, 
i . e . ,  

) u* + 5. (6) 
U* 
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Here u* = ('rlm/PO) 1/2 is the dynamic velocity and r is the radial coordinate [9]. As follows from experimental 
data of [9], the layer thickness 81 can be found from the formula 

Using (6) and (7), we obtain 

~18 ---- lZlmB~ 

where C ~ -0.00385 and D ~ 0.0546. 

61 0.0154 
R - sinh " ( 7 )  

B = 1 - ( C l n R e ~ +  D)/sinh, (8) 

The empirical formula for the phase shift ~b between rl at the wall and ul at the tube axis is obtained 
from the data of [9]: 

= 0.838 - 0.891(Re~ �9 10-6). (9) 

~ = ~ 0 / B .  (10) 

With allowance for (8) and (9), we have 

7" 1 -- p0/~ exp (iq~)Uls, 

To estimate ql, we assume 

q ~ = - ~ r p l .  (11) 

(12) 

The thicknesses of the dynamic and thermal boundary layers can be calculated from the formulas 

Sl = ~ ' J " P o  OJ, ~T1 = ~/2Ae/p0C-pCO 

(the subscript e refers to the effective value). Since 61 << R and ~ << R, in the definitions 

ql = �9 T F I d  n = - ~ ,  ~ l .  

the derivatives with respect to r can be replaced by the increment ratios. From (10) and (11), and the 
conditions at the tube wall ul (R)  = 0 and TI(R) = 0, it follows that  

AeTlm Pe ~ poflexp (i,~). (13) 

One can easily show that  pl "~ po%Tlm outside the boundary layer. From (12) and (13), we obtain 

= [$exp ( i ~ ) / ~ .  (14) 

The turbulent Prandtl  number is Prt ~ 0.9 in the boundary layer of steady turbulent flows [15]. We assume 
this value to be acceptable for our case, too. 

We pass to the dimensionless variables in (2), assuming that  151 = p l / po~  and ills = uls/co. Taking 
into account (10), (11), and (14), we obtain 

1 0 f i l s  0/~1 1 ~Pl  ~fi18 m- -1  2]~exp(i~b) (15) 
o-7- + ~ ;  = -a~,o ,  ~ a-/- + ~ - ~  : v ~  a ~ '  ~ = R~o 

The solutions of system (15) have the form 

#1 = rl cos (kx + a l  + i71)exp [i(wt + ~bl)], (16) 

ills = - i r l p l  sin ( kz  + cq + i71) exp [i(r + ~o + ~bl)]. 

Here r l ,  a l ,  71, and ~bl are real constants of integration, #1 = Ik/(ko - ia)l, ko = o:/co, ~o = arg[k/(k0 - ia)], 
and 

�9 a ~ - i  ~ e - 1  a 2 

k 2 = k 0 2 [ 1 - Z k o ( l + ~ )  ~ 0 2  ]. (17) 
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Since a/ko << 1, the last term in (17) can be ignored, i.e., 

k .~ l~ - ib, b = 1 + ~ 1  = bl + iln, (18) 

where bl = ( ~ / ~ ) ( 1 +  ( ~ -  1 ) / v ' l ~ )  cos ~S and h = ( ~ / P , ~ ) ( I +  ( ~ -  1 ) /~1~7)  sin *. Thus, k ~ k, + h - ibl; 
bl and/~ refer to absorption and dispersion, respectively. 

We now consider the boundary conditions. We prescribe the piston velocity at the tube end closed by 
the piston (x = 0): 

fi,s(0, t) = -IMp exp (/wt). (19) 

We consider the flow at the open end (z = L) of the tube equipped with an infinite flange (Fig. la). 
Let, at  a certain distance from the exit cross section inside the tube (cross section AA'), the velocity variation 
obey the law 

u = V cos ~t. (20) 

We use a model proposed in [16, 17] which implies the jet outflow (u t> 0) and the spherical inflow (u ~< 0) 
into an orifice located at the point O. The gas leaving the tube is enclosed in a volume with generatrices B E  
and B E t  Since the mixing layer of the jet has no time to develop near the open end of the tube (at distances 
z < fir [5]), the jet cross-sectional area remains practically constant and equal to the tube cross-sectional area 
So. In this case, the gas velocity is also independent of z. The gas flows into the tube through the hemispheres 
BbB', COG', etc. The role of viscous losses in the source of suction is insignificant [18]. Thus, we can assume 
that the gas inflow is potential and the hemispheres are isotachs. The amount of gas crossing the hemispheres 
remains constant, and the following equation is valid for a hemisphere of arbitrary radius x: 

. ( x , t )  = r  [r  = R2/~21, (21) 

where uBbB,(t ) is the velocity at the points of the hemisphere BbB' passing through the tube edges (x = R). 
For a tube without a flange (Fig. lb), we have @(z) = R2/[x 2 + (z  - R) 2 + (~r/2)R(x - R)]. 

We consider the outflow through the cross section BB'  and the inflow through the hemisphere BbB'. 
By virtue of the mass conservation law, the amount of gas going out through B B  ~ should be compensated by 
a return gas flow through BbB',  i.e., 

tl T 
/ + S = 0 122) So 
0 t 1 

(S = 2~rR2). Since S > So, to satisfy (22) it is necessary that the outflow duration tl be larger than the inflow 
duration. This is possible if the velocity has a constant component. Assuming the latter to be proportional 
to the amplitude of fluctuations of the velocity V, we obtain [17] the expression tt = V(m0 + cos~vt), x = R, 
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where the parameter  m0 should be determined from (22). 
The outflow duration tl is found from the condition u = 0. Then we have 

u, , ( t )  = BV(mo + cos t), + o) <. + 0), 
(23) 

uSbB'(t) = V(mo + cos t), + O) .< .< (3 /2 - 0), 

where 0 = arcsin m0. Substituting (23) into (22), we obtain 

(B + 2)a'm0 + 2(B - 2)[m0 arcsin m0 + sin (arccos m0)] = 0. (24) 

The calculation shows that  B ~. 0.93 under the experimental conditions of [3]. It follows from (24) that 
m0 ~ 0.239. 

We consider the  oscillations of the panicles intersecting, for instance, the cross section E E '  (Fig. la), 
assuming the motion to be potential. The outflow velocity is determined by (23), and the inflow velocity is 
found from (21) according to which the velocity decreases rapidly as x increases. Expanding u(t) into a Fourier 
series, we have 

m0 

, 1( ) 
ao = -lr (moo + cos 0), al = -lr 0 + 2too cos 0 - ~ sin 20 , (25) 

1 (  1 ) V u 
a2 -- - cos 8 - m0 sin 28 - cos 38 ME = - - ,  fi = - - .  

Ir 3 ' cO co 

An analysis shows that  significant changes in fi with distance x, which are faster in the case of a tube 
without a flange, end at x ~. 3R. Beginning from z .~ 5R, the composition of oscillations becomes independent 
of = and the geometry of the  tube's open end. For z > 6R, the viscosity becomes significant. The evolution of 
an oscillating jet  was considered in detail in [5]. Let fioo be the velocity at a large distance from the open end 
of the tube, where we can still ignore viscous effects (let this be valid for the cross section EE') .  Assuming 
x --* co in (25), we have 

fioo -- ME[(m0/2 + ao) -I- (1/2 + a l )  coswt -I-a2cos2wt -I- . . .1. (26) 

For a potential flow whose velocity is described by (25), we can use the Lagrange-Cauchy integral 

_ u ~ a ~  
P + + = F(t) ,  (27) 
p0 T 

where the order of the  third te rm is estimated as Sh, i.e., it can be ignored. Applying (27) to two cross 
sections (for example, A A '  and E E '  in Fig. la),  assuming the atmospheric pressure in the cross section EE' ,  
and obtaining the  velocity from (20) and (27), after simple transformations we have 

h ( L , t )  = mft~ m = m l / B  2, ml = (1/2 + al)(mo/2 + ao + a2/2), (28) 

where fi~ s is the  ampli tude of velocity fluctuations averaged over the tube cross section at the open end of 
the tube. Under the  experimental conditions of [3], we have ml  ~ 0.361. 

Condition (28) is nonlinear, as in [3, 6-8, 11], but, in contrast to the variants used in these papers, it 
is derived from the  flow model near the open end of the tube without any semiempirical considerations. 

Substituting the  solutions of (16) into (19) and (28), we obtain a system for determination of the 
desired constants: 

rip1 sin ctl cosh 71 = Mp cos (~o + r rip1 cos a l  sinh71 = - M p  sin (~ + r 

cos z cosh w = mrltt~ ~/sin 2 z + sinh2 w( cos z sinh w cos ~ + sin z cosh w sin ~), ( 29 ) 

sin z sinh w = mr l r /~ / s in  2 z + sinh2w(sin z cosh w cos~ - cos z sinh w sin qo). 
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Here z = (/co + b2)L + a l  and w = ~/1 - blL. System (29) is easily solved under the assumptions rl << 1, 
sinhw ,,~ r l ,  coshw ,,~ 1, and pl  "~ 1, whence ~1 << 1. We write the solution in the form 

,r rl(mrl + blL) sin (k0 + b2)L 
al = ~ - (ko + b2)L, ~fl = mr1 + blL, sin(~ + ~bl) = 

MY (30) 
r1 /cos2(ko + + (mr, + biL)2 sin2(ko + = Mr. 

It follows from the above equations that  the resonance in the system is reached when (k0 + b2)L = ~r/2, i.e., 
the resonance frequency is shifted, and, for this shift, from formulas (5), (10), and (18) we obtain 

7r12-~L  2 2 f w r l L (  = - 1 )  
lr/2 = b 2 L = - l r ~ - R  1 +  ~ sin~. (31) 

Under the  resonance conditions, it follows from (30) that  

- 1 -112 M;[m fw L(I+ )cos~6] , (32) rx = / 2  t + 

which again takes into accaunt (5), (10), and (18). 
Figure 2 shows experimental  data  [3] (points) and calculation results obtained by (32) (curves). 

Agreement of the  da ta  is quite satisfactory: the points deviate from the dependence (32) by no more than 5%. 
The  data  scatter is caused, as follows from (32), by different L/R ratios (L/R = 171, 129, and 89 for curves 
1-3, respectively). 

We now discuss the shift of the resonance frequency A~/~0 described by formula (31). Before comparing 
the values calculated from (31) with experimental data, we have to take into account the  so-called tip correction 
to the tube length, which is induced by flow inertia near the open end [3], i.e., to subst i tute  L for L + AR in 
(31), where A N 1 [3]. For the resonance-frequency shift, we can write 

A t e _  2 fwrl L ( z e - l ~  R 
w0 �9 3B ~ . l + ~ / s i n d + A ~ .  

The  maximum discrepancy between the calculated and experimental results is 33% (see Table 1). 
Thus, we can state tha t  the  model proposed in the  present work is in good agreement with the available 

experimental data. 
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